人気ブログランキング | 話題のタグを見る

幾何学模様のブログ みずすましの図工ノート

j344.exblog.jp
ブログトップ
いわいまさかさんとのコラボ。フラクタルアニメのみっつめ。
フラクタルアニメ その3_a0180787_23430947.gif
これまでのフラクタルアニメその1その2の正方形ベースから離れて、シェルピンスキーのギャスケットがモチーフのアニメである。

シェルピンスキーのギャスケットは、ふつう3つの相似変換(相似縮小)を使って作るのだけれど、見ようによっては、こんなふうに5つの相似変換でできていると思うこともできる(ひとつの色がひとつの相似変換に対応)。



3つでできるところを、わざわざ5つ使うところがポイント。詳しくは説明しないけれど、じつは3つで回すとシェルピンスキーのギャスケットが形を変えずに単に回転するだけになってしまうのである。

続けてみても面白い。



ちなみに、いわいさんにお願いした時の元ネタは、こんなざっくりした絵だった。これが、ああなる。いわいさんに感謝。

フラクタルアニメ その3_a0180787_23595727.jpg

描画には、カオスゲームという点描的な方法を使っている。点をひとつずつ描画する過程で確率的な選択が必要なのだけど、うまく確率を設定しないと点描に粗密のムラができる。今回の個人的な収穫は、確率の設定にフラクタル次元が関係する、ということが分かったことだった。

以下はマニア向けだが、念のため書いておきたい。

****************

IFSを構成する相似縮小の縮小率をa1,a2,…,anとするとき、
a1^d+a2^d+...+an^d=1 となるdを、
そのIFSで定められる自己相似集合Fの次元と呼ぶことにする。

このとき、カオスゲームの確率を
a1^d,a2^d,...,an^dとすると、粗密のムラが起きない。


# by j344 | 2014-11-05 00:18 | 動く壁紙
いわいまさかさんとのコラボ。フラクタルアニメのふたつめ。


自分自身のミニチュアが4つあって、その縮小率が0~0.5まで変化していく。縮小率0.5のとき、中身の詰まった正方形になる。そこから白黒反転して続くのは、いわいさんの案。

さて。このアニメ、見方によっては自分自身のミニチュアが16個あると思うこともできる。ミニチュア4個が第一世代だと考えれば、第二世代が16個ある訳だ。縮小率を変えていく途中で、ミニチュアの個数を16個から4個に減らしたら、循環するアニメができるのではないかしら。

これは面白そうだと、ひとりで盛り上がった。そこで、いわいさんにお願いして作ってもらったのが次のアニメ。



なのだけれど、いわいさんの評は「どうなるんだろうな~と注目してると消えますw」。私の感想も「線香花火の風情ですねえ。もののあはれ」ということで、いささか企画倒れになってしまった。

フラクタルアニメのその1もその2も、じつは背景に「フラクタル図形(自己相似集合)同士の包含関係への興味」がある。どんな順序構造があって、どう遊べるのか。

きっと、これだけだとまだ伝わりにくい。コラボレーションは続きます。

# by j344 | 2014-11-02 00:01 | 動く壁紙
友人のいわいまさかさんにお願いして、幾何学アニメを形にしてもらいました。フラクタル図形が踊ります。
フラクタルアニメ その1_a0180787_23134015.gif

元の記事(いわいさんのブログ)ではアプリが公開されています。

コラボは続きます。乞う、ご期待!

# by j344 | 2014-10-09 23:36 | 動く壁紙

くるくる回る白いドット

最近、GIZMODOの「このくるくる回る白いドット、実は真っ直ぐ往復してるだけなんだぜ」という記事をTwitter他で紹介した。"Crazy Circle Illusion! "という、ふた通りの解釈ができるアニメーションの紹介記事である。

すると、友人の宮本尚さんから「これは、それぞれのドットの動くタイミングを変えるとどうなるんですか?」という質問があった。少し考えて「白いドットでできた図形が変形して行くのではないかと思います」と答えたのだが、そのときはどんなふうに変形するのかまでは想像が及ばなかった。今日は実際にアニメーションを作ってみたので、それをご紹介したい。

ひとつの白いドットの移動速度に注目すると、もともとの動画は速くなったり遅くなったりしている。大きな円の中心付近では速く、円周付近では遅い。まず考えたのは、この白いドットの移動速度を等速にしたらどうなるかということである。やってみたのが次のgifアニメ。
くるくる回る白いドット_a0180787_16583032.gif
確かに変形している。補助線を引くとこんな感じになる。
くるくる回る白いドット_a0180787_16594713.gif
それぞれの白いドットが等速で直線上を往復しているのが分かる。

さて、白いドットでできた図形。円は等速の往復運動で変形したが、等速の往復運動で変形しないような図形もある。どんな図形だろう。

たとえば、こんなのが考えられる。
くるくる回る白いドット_a0180787_17080745.gif
回転しているように見える。これも補助線を引いてみよう。
くるくる回る白いドット_a0180787_17082774.gif
中心付近がごちゃごちゃするが、直線上の等速往復運動である。

他にもタイミングを変える方法は色々考えられるが、まだトライしていない。いずれにしても、白いドットでできた図形の形が変わらないのは、なかなか稀なことのような気がする。

# by j344 | 2014-07-27 17:15 | 数学

黄金比の拡張について

黄金比の一般化としては、たとえば貴金属比というのが知られている(白銀比青銅比など)。でも、ここで考えたいのは、別の方向への拡張だ。

黄金比は正5角形と関係が深い。正7角形や正9角形、一般の正n角形で黄金比に相当するものは何だろうか。この辺りのことがわかると、ペンローズタイルの拡張を考えるのに役立ちそうだ。少し難しいけれど、やってみよう(なお、ペンローズタイルをご存知ない方は、過去の記事「ペンローズタイルの作り方」を参照頂きたい)。

まず、おさらい。正5角形に対角線を引くと、2種類の二等辺三角形ができる。
黄金比の拡張について_a0180787_22301691.png
各二等辺三角形を、拡大縮小。等辺の長さをぜんぶ1に揃えてみる。
黄金比の拡張について_a0180787_22212396.png

このとき、底辺の長さに黄金数φ=1.618…が登場する。左の三角形の底辺がφ、右の三角形の底辺が1/φ=φ-1である。正5角形を並べたり、対角線を分割したりすると、いろんなところにφに関係した長さが登場する。 黄金比の性質、さまざまな関係式については、wikipediaを参照してほしい。


さて拡張。正多角形を考える。ここでは、正11角形を例として考えよう。対角線を引くと、たくさんの二等辺三角形ができる。次の5種類の二等辺三角形に注目する。
黄金比の拡張について_a0180787_22282999.png
各二等辺三角形を、拡大縮小。等辺の長さを1に揃えてみる。
黄金比の拡張について_a0180787_22314302.png
これらの三角形の底辺の長さを、左からそれぞれb1~b5とする。

このとき、次のような関係式が成り立つ。

(1) b1b2b3b4b5=1
(2) b1-b2+b3-b4+b5=1
(3) b1b2=b3+b1
(4) b2b3=b5+b1

(1)(2)は美しいが、(3)(4)はよく分からない。でも、掛け算が変な足し算になったりしていて面白い。端数が出てこずにb1~b5だけで書けるのも不思議だ。乗積表(もどき)を作っておくと法則性が見えるかもしれない。
黄金比の拡張について_a0180787_08464132.png

どう証明するか。1の22乗根を使うと上手く計算ができる。

なぜ突然1の22乗根が出てくるのか。正n角形と1のn乗根には深い関係があって、zn=1の根は複素平面上で単位円をn等分する。次の図を見ると、b1~b5が1の22乗根で表せそうな気がしてくる。
黄金比の拡張について_a0180787_23060866.png
という訳で、z=e(π/11)i=cos(π/11)+i sin(π/11)とおくと、b1~b5は次のように書ける。
b1=z-z10
b2=z2-z9
b3=z3-z8
b4=z4-z7
b5=z5-z6

これで準備が整った。複素数の計算に慣れていないと分かりにくいかもしれないけれど、あとは、
z11=-1と
z10-z9+z8-z7+z6-z5+z4-z3+z2-z+1=0
に注意して計算すればよい。ひとつやってみると、こんな感じだ。

b1b2=(z-z10)(z2-z9)
   =z3-z10-z12+z19
   =z3-z10+z-z8
   =(z3-z8)+(z-z10)
   =b3+b1

ところで黄金比はどこへ行ったのか。じつは先ほどの(1)と(2)が黄金比の持っていた性質の自然な拡張になっている。正5角形にもどってみると、ふたつの底辺の掛け算φ(1/φ)=1に相当する性質が(1)で、ふたつの底辺の引き算φ-(1/φ)=φ-(φ-1)=1に相当する性質が(2)だ、というふうに見ることができる。また、φ11=b1とおくことにして先ほどの関係式を駆使すると、b2~b5をφ11で表すことができる。面倒なので書かないが、興味のある方は計算してみてほしい。この辺りも黄金数φに似た性質ということができるだろう。

最後に、ペンローズタイルの拡張との関係。最初の5種類の二等辺三角形。底辺のところに鏡を置くと、ひし形が5種類できる。
黄金比の拡張について_a0180787_23482617.png
これをたとえばこんな風に並べることができる。
黄金比の拡張について_a0180787_00204936.png
上手く並べると、きっとペンローズタイルの正11角形版ができる。しかし、まだその並べ方を見つけていない。並べ方の分析には、きっと辺の長さや面積の計算が必要だ。その計算には今回検討した、黄金比の拡張を使うことができる。

今回は触れなかったが、各二等辺三角形の面積についても綺麗な表示ができて、なかなか美しい関係式がある。これはまたの機会にまとめようと思う。

正7角形や正9角形でも、正11角形で議論したことの類似が成り立つ。nが合成数か素数かなどによっても、いろいろ様子が違ってくるみたいだが、拡張の基本はこんな感じで行けるのではないかと思う。

# by j344 | 2014-07-10 00:32 | 数学

幾何学模様について研究するブログです。幾何学模様大図鑑の制作を目指しています。


by j344