人気ブログランキング | 話題のタグを見る

幾何学模様のブログ みずすましの図工ノート

j344.exblog.jp
ブログトップ

折り紙とペンローズタイル

折り紙でペンローズタイルを作る試みにはいくつか前例がある。

ロバート・J・ラングさんのペンタジア(平面に正投影するとペンローズタイルになるユニット折り紙)

などである。

一方、ペンローズタイル自体を折紙作品の展開図だと思って折ってやると、何ができるだろう。もちろん、そのまま(ひし形のタイルのまま)では上手く折れないので折り線を足す必要がある。試行錯誤。トライしてみると、案外きれいに折れて面白かった。
折り紙とペンローズタイル_a0180787_23045352.jpg
折り紙とペンローズタイル_a0180787_23050858.jpg
前例がないかどうか、三谷純さんに聞いてみたら「聞いたことがないですので、面白い試みですね」とのお返事を頂き、これは有望かもしれないぞと嬉しくなってしまった。折る前の原紙はこれである。
折り紙とペンローズタイル_a0180787_23062019.jpg
どういう経緯でこれを思いついたのか。私の所属するパズル懇話会の会誌の編集を今回仰せつかったのだが、この会誌、モノクロ印刷である。表紙に使えるいい模様はないかと、過去のブログ記事を読み返していたら「ペンローズタイルの作り方」の途中段階、二等辺三角形タイリングの状態が二色で塗り分けできることに気が付いた。

ここで、ふと折り紙の「二色定理」を思い出した(平坦に折り畳める折り目で区切られた領域は、二色で塗り分けが可能である)。川崎定理 の条件も満たしているみたいだ。逆は必ずしも真ならずではあるのだが、何だかこれは折れるのではないか。折ってみよう。試しに折ってみたら、できてしまった。という訳で、もしも会誌がフルカラーであったなら、おそらく今回の発見はなかったのである(平坦折りについての解説は、三谷純さんの折り紙研究ノートをご参照頂きたい)。

山折り谷折りは試行錯誤で決めたので、分析が行き届いておらず、どこが山でどこが谷かを描き込んだ展開図はまだ作っていない。たぶん、前川定理の条件(平坦折りの頂点に集まる「山折り」と「谷折り」の数の差は±2)も満たしているとは思うのだが、大局的には平坦に折り畳めないらしい。

他の非周期模様(たとえば、Danzer's 7-fold variant)や、もっと大きなサイズのペンローズタイルが上手く折れるかどうか。これも気になるところである。
折り紙とペンローズタイル_a0180787_23285521.png
とりあえず、今日はここまで。

by j344 | 2014-05-22 23:40 | 折り紙

幾何学模様について研究するブログです。幾何学模様大図鑑の制作を目指しています。


by j344