Self-tiling tile setsについて

標題のSelf-tiling tile setsはたとえば、こんなことができるピースのセットのことである。
a0180787_23553891.png
オランダのLee Sallowsさんが2012年に命名した。

ピースが沢山あると、拡大操作を反復して非周期的な模様を作ることが出来る。たとえば、こんな感じになる。
a0180787_23554675.png
今年、図形パズル研究所というチームで探索を行い、Lee Sallowsさんの発見分以外に21種類のSelf-tiling tile setsを発見した(私も3種類発見した)。このたび図形パズル研究所+秋山久義さんの許可を得て、パズル懇話会の会誌(こんわかい・NEWS Vol.37 No.4)より記事を転載する。詳細、次のリンクを参照頂きたい。

by j344 | 2015-11-16 23:57 | パズル | Comments(1)

先日、中川宏さんの積み木インテリアギャラリーに訪問した際、お土産に正五角形の板をたくさん頂いた。
a0180787_1554298.png

さてどうやって遊ぼうかしらと、よく思案もしないままパズル懇話会で紹介したところ、いわいまさかさんから、ぐるぐる巻いてはどうかと提案があった。それは面白そうだ。という訳で、やってみた。
a0180787_1555385.png

こんな感じで、同じ向きにぐるぐる巻きにしていく。正五角形同士は辺で繋ぎ、既に置いた正五角形の板に重ならないように、なるべく密に充填していく。これを続けていくとどんな形ができるだろう。

少し世代を進めると、こんな感じになる。何かパターンが見えるだろうか。
a0180787_156158.png

隙間のひし形に注目する。向きに注意して、色を付けてみるとこんな感じ。
a0180787_156873.png

どうも、横一列に並ぶ紫色のひし形を除けば、ひし形の向きは同じみたいだ。なんだか、対称性もある気がする。一周巻くごとに薄く色を付けてみよう。
a0180787_1561572.png

するとこんな感じになる。色付けした個所の形、ぼんやり眺めると六角形に見える(平行六辺形というのだろうか。もちろんよく見ると辺に相当する部分がギザギザしているので六角形ではないのだが)。巻く回数を増やすと、この六角形っぽい領域が、だんだん太くなっていくようだ。始めの方は不規則に見えたけれど、けっこう規則的である。

さて、そもそものきっかけ。頂いた正五角形の板から離れるが、これが正七角形だとどうなるだろう。
a0180787_1562275.png

最初のうちはこんな感じである。正五角形のときより不穏な感じがする。これを続けると、はたして。
a0180787_1563030.png

こうなる。が、いまいち規則性が見えない。この先どうなっていくのだろう。分かった人は教えてほしい。
by j344 | 2015-04-26 15:41 | スケッチ | Comments(1)

折り紙でペンローズタイルを作る試みにはいくつか前例がある。

ロバート・J・ラングさんのペンタジア(平面に正投影するとペンローズタイルになるユニット折り紙)

などである。

一方、ペンローズタイル自体を折紙作品の展開図だと思って折ってやると、何ができるだろう。もちろん、そのまま(ひし形のタイルのまま)では上手く折れないので折り線を足す必要がある。試行錯誤。トライしてみると、案外きれいに折れて面白かった。
a0180787_23045352.jpg
a0180787_23050858.jpg
前例がないかどうか、三谷純さんに聞いてみたら「聞いたことがないですので、面白い試みですね」とのお返事を頂き、これは有望かもしれないぞと嬉しくなってしまった。折る前の原紙はこれである。
a0180787_23062019.jpg
どういう経緯でこれを思いついたのか。私の所属するパズル懇話会の会誌の編集を今回仰せつかったのだが、この会誌、モノクロ印刷である。表紙に使えるいい模様はないかと、過去のブログ記事を読み返していたら「ペンローズタイルの作り方」の途中段階、二等辺三角形タイリングの状態が二色で塗り分けできることに気が付いた。

ここで、ふと折り紙の「二色定理」を思い出した(平坦に折り畳める折り目で区切られた領域は、二色で塗り分けが可能である)。川崎定理 の条件も満たしているみたいだ。逆は必ずしも真ならずではあるのだが、何だかこれは折れるのではないか。折ってみよう。試しに折ってみたら、できてしまった。という訳で、もしも会誌がフルカラーであったなら、おそらく今回の発見はなかったのである(平坦折りについての解説は、三谷純さんの折り紙研究ノートをご参照頂きたい)。

山折り谷折りは試行錯誤で決めたので、分析が行き届いておらず、どこが山でどこが谷かを描き込んだ展開図はまだ作っていない。たぶん、前川定理の条件(平坦折りの頂点に集まる「山折り」と「谷折り」の数の差は±2)も満たしているとは思うのだが、大局的には平坦に折り畳めないらしい。

他の非周期模様(たとえば、Danzer's 7-fold variant)や、もっと大きなサイズのペンローズタイルが上手く折れるかどうか。これも気になるところである。
a0180787_23285521.png
とりあえず、今日はここまで。

by j344 | 2014-05-22 23:40 | 折り紙 | Comments(1)

レプタイル その2

さて、前回の「レプタイル その1」でご紹介したレプタイル。模様と何の関係があるのかが保留のままだった。次の図のような反復操作が行うと、平面敷き詰めと関係のあることが見えてくると思う。

a0180787_2227930.gif


これは「ペンローズタイルの作り方」でもご紹介した、置換規則(substitution rule)による、模様の構成法である。いまは操作を繰り返すたび、ひとつひとつのタイルがどんどん小さくなって行くけれど、操作の都度拡大してやれば、どんどん平面を埋めていくことになる(基準の点をどこに選ぶかが平面充填のときにはちょっと問題になるけれど)。

ところで、ここまでご紹介してきたレプタイルは、どれも、縮小コピーのサイズが等しかった(互いに合同だった)。つまり、n-レプタイルが元のタイルをn等分していた。定義上は、自分の縮小コピー同士のサイズが違っていても構わないのではないかしら、と思うのだが(何か慣習でもあるのだろうか。不思議とそういうのをレプタイルと呼んでいるのは見たことがないのだが)、等分しないような例も色々と挙げることができる。

a0180787_22271491.gif


(1)~(4)は正方形の正方形による分割。等分になるときもあるが、6以上なら任意の個数に分割できる。(5)のような分割は任意の直角三角形で可能である。(6)は「正方形をサイズがすべて異なる小正方形に分割せよ」というルジンの問題の、duijvestijnによる最少個数の解。(7)はコッホ雪片というフラクタル図形である。どれも輪郭線と中のタイルが同じ形になっている。

最後の(8)はアムマンのタイルという奴で、ちょっと変則的な置換規則を使うと、サイズの異なる2種類のタイルによる"非周期的な"平面敷き詰めを構成できる。置換規則は次のようなパターンだが、ご理解いただけるだろうか。

a0180787_22271970.gif


ちなみに、アムマンのタイル張りについては、数学セミナー2012年2月号の秋山茂樹さんの記事「準結晶の数学的モデル」を参考にした。同じく秋山茂樹さんの"A NOTE ON APERIODIC AMMANN TILES"も参考になる、と思うのだけれど、ちゃんと読んでいません。あしからずご了承ください。

***********

6月6日、追記。英語を読まないのは悪いくせだ。wikipediaによれば、等分ではないタイプのレプタイルは、"irregular rep-tile"または"irreptile"と呼ばれているようだ。ここに色々な例があるのを見つけた。
by j344 | 2013-06-03 23:01 | 幾何学模様大図鑑 | Comments(0)