「ほっ」と。キャンペーン

くるくる回る白いドット

最近、GIZMODOの「このくるくる回る白いドット、実は真っ直ぐ往復してるだけなんだぜ」という記事をTwitter他で紹介した。"Crazy Circle Illusion! "という、ふた通りの解釈ができるアニメーションの紹介記事である。

すると、友人の宮本尚さんから「これは、それぞれのドットの動くタイミングを変えるとどうなるんですか?」という質問があった。少し考えて「白いドットでできた図形が変形して行くのではないかと思います」と答えたのだが、そのときはどんなふうに変形するのかまでは想像が及ばなかった。今日は実際にアニメーションを作ってみたので、それをご紹介したい。

ひとつの白いドットの移動速度に注目すると、もともとの動画は速くなったり遅くなったりしている。大きな円の中心付近では速く、円周付近では遅い。まず考えたのは、この白いドットの移動速度を等速にしたらどうなるかということである。やってみたのが次のgifアニメ。
a0180787_16583032.gif
確かに変形している。補助線を引くとこんな感じになる。
a0180787_16594713.gif
それぞれの白いドットが等速で直線上を往復しているのが分かる。

さて、白いドットでできた図形。円は等速の往復運動で変形したが、等速の往復運動で変形しないような図形もある。どんな図形だろう。

たとえば、こんなのが考えられる。
a0180787_17080745.gif
回転しているように見える。これも補助線を引いてみよう。
a0180787_17082774.gif
中心付近がごちゃごちゃするが、直線上の等速往復運動である。

他にもタイミングを変える方法は色々考えられるが、まだトライしていない。いずれにしても、白いドットでできた図形の形が変わらないのは、なかなか稀なことのような気がする。

by j344 | 2014-07-27 17:15 | 数学 | Comments(0)

黄金比の拡張について

黄金比の一般化としては、たとえば貴金属比というのが知られている(白銀比青銅比など)。でも、ここで考えたいのは、別の方向への拡張だ。

黄金比は正5角形と関係が深い。正7角形や正9角形、一般の正n角形で黄金比に相当するものは何だろうか。この辺りのことがわかると、ペンローズタイルの拡張を考えるのに役立ちそうだ。少し難しいけれど、やってみよう(なお、ペンローズタイルをご存知ない方は、過去の記事「ペンローズタイルの作り方」を参照頂きたい)。

まず、おさらい。正5角形に対角線を引くと、2種類の二等辺三角形ができる。
a0180787_22301691.png
各二等辺三角形を、拡大縮小。等辺の長さをぜんぶ1に揃えてみる。
a0180787_22212396.png

このとき、底辺の長さに黄金数φ=1.618…が登場する。左の三角形の底辺がφ、右の三角形の底辺が1/φ=φ-1である。正5角形を並べたり、対角線を分割したりすると、いろんなところにφに関係した長さが登場する。 黄金比の性質、さまざまな関係式については、wikipediaを参照してほしい。


さて拡張。正多角形を考える。ここでは、正11角形を例として考えよう。対角線を引くと、たくさんの二等辺三角形ができる。次の5種類の二等辺三角形に注目する。
a0180787_22282999.png
各二等辺三角形を、拡大縮小。等辺の長さを1に揃えてみる。
a0180787_22314302.png
これらの三角形の底辺の長さを、左からそれぞれb1~b5とする。

このとき、次のような関係式が成り立つ。

(1) b1b2b3b4b5=1
(2) b1-b2+b3-b4+b5=1
(3) b1b2=b3+b1
(4) b2b3=b5+b1

(1)(2)は美しいが、(3)(4)はよく分からない。でも、掛け算が変な足し算になったりしていて面白い。端数が出てこずにb1~b5だけで書けるのも不思議だ。乗積表(もどき)を作っておくと法則性が見えるかもしれない。
a0180787_08464132.png

どう証明するか。1の22乗根を使うと上手く計算ができる。

なぜ突然1の22乗根が出てくるのか。正n角形と1のn乗根には深い関係があって、zn=1の根は複素平面上で単位円をn等分する。次の図を見ると、b1~b5が1の22乗根で表せそうな気がしてくる。
a0180787_23060866.png
という訳で、z=e(π/11)i=cos(π/11)+i sin(π/11)とおくと、b1~b5は次のように書ける。
b1=z-z10
b2=z2-z9
b3=z3-z8
b4=z4-z7
b5=z5-z6

これで準備が整った。複素数の計算に慣れていないと分かりにくいかもしれないけれど、あとは、
z11=-1と
z10-z9+z8-z7+z6-z5+z4-z3+z2-z+1=0
に注意して計算すればよい。ひとつやってみると、こんな感じだ。

b1b2=(z-z10)(z2-z9)
   =z3-z10-z12+z19
   =z3-z10+z-z8
   =(z3-z8)+(z-z10)
   =b3+b1

ところで黄金比はどこへ行ったのか。じつは先ほどの(1)と(2)が黄金比の持っていた性質の自然な拡張になっている。正5角形にもどってみると、ふたつの底辺の掛け算φ(1/φ)=1に相当する性質が(1)で、ふたつの底辺の引き算φ-(1/φ)=φ-(φ-1)=1に相当する性質が(2)だ、というふうに見ることができる。また、φ11=b1とおくことにして先ほどの関係式を駆使すると、b2~b5をφ11で表すことができる。面倒なので書かないが、興味のある方は計算してみてほしい。この辺りも黄金数φに似た性質ということができるだろう。

最後に、ペンローズタイルの拡張との関係。最初の5種類の二等辺三角形。底辺のところに鏡を置くと、ひし形が5種類できる。
a0180787_23482617.png
これをたとえばこんな風に並べることができる。
a0180787_00204936.png
上手く並べると、きっとペンローズタイルの正11角形版ができる。しかし、まだその並べ方を見つけていない。並べ方の分析には、きっと辺の長さや面積の計算が必要だ。その計算には今回検討した、黄金比の拡張を使うことができる。

今回は触れなかったが、各二等辺三角形の面積についても綺麗な表示ができて、なかなか美しい関係式がある。これはまたの機会にまとめようと思う。

正7角形や正9角形でも、正11角形で議論したことの類似が成り立つ。nが合成数か素数かなどによっても、いろいろ様子が違ってくるみたいだが、拡張の基本はこんな感じで行けるのではないかと思う。

by j344 | 2014-07-10 00:32 | 数学 | Comments(4)

前々回の記事「高木曲面(2変数版の高木関数)」で、アルキメデスが高木関数に似た方法で放物線を作ったと書いた。放物線ではなく、回転放物面を作るにはどうしたらよいだろうか。

前々回の構成を真似て、次のようなピラミッドの列を考えてみる。左のグラフと真ん中のグラフ、高さを足すと右のグラフができる。
a0180787_22434537.gif
a0180787_22443360.gif
a0180787_22445503.gif
a0180787_22451237.gif
a0180787_22454338.gif
a0180787_22461588.gif
この各ステップを順番に積み重ねていく。
a0180787_22475500.gif
a0180787_22481358.gif
a0180787_22483304.gif
a0180787_22490366.gif
a0180787_22491868.gif
と、こんな感じになって、どうやら右のグラフは回転放物面に収束しそうである。左のグラフと真ん中のグラフは、どちらもピラミッドを積み重ねて作っただけあってよく似ている。たとえば、左のグラフを3Dプリンターで作っておく。真ん中のグラフをピンプレッションで作っておいて、ふたつを重ねると回転放物面ができる。そんなおもちゃを作ることが可能かもしれない。

参考まで、回転放物面 z=0.5-(x-0.5)^2-(y-0.5)^2 のグラフを描いておく。

a0180787_22515082.gif
本当に回転放物面に収束するかどうかだが、実際、アルキメデスの結果から、正方形[0,1]×[0,1]の対角線のところと輪郭のところに現れる曲線は放物線であることがすぐに分かる。他がちゃんと上手く行っていることを証明するにはどうすればよいだろう。

ところで、前々回の高木関数2変数版。あれはちゃんとした拡張だったのだろうか。放物線と高木関数のアナロジーで考えると、回転放物面に対応するのは、次のグラフの方が適切かもしれない。
a0180787_23053856.gif
世の中には、同じようなことを考える人がいるもので。これはYoshiaki Arakiさんに教えて頂いた、mont Takagiというのと、たぶん同じ関数だと思う。

by j344 | 2013-12-02 23:16 | 数学 | Comments(1)

模様からの脱線ついでに、もうひとつ数学風の話題。前回の記事でも参照した、高木関数。これの二変数版を考えてみる。どうなるか。とりあえずの回答が、次のアニメである。

a0180787_2252381.gif


高木関数のことを高木曲線ということもあるようなので、これは高木曲面というべきだろうか。ツールはExcelのグラフ機能を使った。

どう作ったか。まず次のようなピラミッドを用意する。右は等高線である。
a0180787_22555231.gif

a0180787_22561048.gif

a0180787_22562171.gif

a0180787_22563250.gif

a0180787_22564099.gif

a0180787_22564843.gif


おろし金のようになってきた。この各ステップを順番に積み重ねていくと、だんだんデコボコしてくる。
a0180787_22594699.gif

a0180787_22595457.gif

a0180787_230096.gif

a0180787_230541.gif

a0180787_2301052.gif

a0180787_2301791.gif


まるで地獄の針の山のようだ。高木関数と同じで「連続だが至る所で微分不可能な関数」になるのだろう。いつか3Dプリンターで、高木曲面オブジェを作ってみたい。

最初のピラミッドの高さについては、正方形の一辺を1として、高さ1/2となる設定で作ったが、正八面体の半分のサイズのピラミッド(高さは1/√2)の方がいいかもしれない。正方形の対角線を通る断面(正方形に垂直な断面)で切ったときにちゃんと高木関数が現れる。アルキメデスは高木関数に似た方法で放物線を作ったが、これで同じことをするとどんな曲面ができるだろうか。

ところで。今回はピラミッドから始めたのだが、次のように考えても面白いかもしれない。フラクタル日よけとしても有名な、シェルピンスキーの四面体。これを作るには、正四面体から正八面体をくり抜く操作を繰り返す。いちどくり抜くと正四面体が4つできる。それぞれの正四面体からまた小さな正八面体をくり抜く。そうすると正四面体が16個できる。どのステップのスポンジも、ある方向から見ると、穴がないように見える(正四面体は正方形に見える)。この、各ステップのスポンジを平面に降り積もらせれば、先ほどのおろし金ができる。
by j344 | 2013-11-25 23:28 | 数学 | Comments(1)

模様の話から少し外れる。数学の話。苦手な方は読み飛ばして頂いて構いません。

格子からみえる数学

枡田幹也 / 日本評論社


を読んでいると、見覚えのある数列が出てきた。基本三角形との関連で紹介されている、スターンの二原子数列。高校時代に有名なフラクタル図形、シェルピンスキーのギャスケットのことを調べていて、同じ数列に出くわしたことがあるのだ。基本三角形は、基本平行四辺形の半分なので、こじつければ模様と無関係ではないかもしれないのだが。

『格子からみえる数学』とは違う方法で、このスターンの二原子数列を構成してみよう。パスカルの三角形から始める。

a0180787_23372094.gif


いつも見るのと違うかもしれないけれど、左端を揃えてあるだけで中身は変わらない。中の数はどれも、左上の数と真上の数の和になっている。

よく知られている事実だが、パスカルの三角形からフィボナッチ数列を作ることができる。
a0180787_23434488.gif

こんな感じにパスカルの三角形の斜めのところを足し算すればよい。赤い数字の列を縦に読めば、前二項の和が次の項になっていることが確認できるだろう。

ところで、パスカルの三角形を2で割った余りを並べてみると、次のようになる。
a0180787_23472250.gif

これも有名な事実だが、これをずっと続けていくと、シェルピンスキーのギャスケットができる。
a0180787_23475890.gif


ここで、先ほどフィボナッチ数列を作ったときと同じように、斜めのところを足し算すると、どんな数列が現れるだろうか。
a0180787_23512684.gif

赤い数字。縦に読むと、増えたり減ったりしている、変な数列だ。これがスターンの二原子数列である。

このスターンの二原子数列には、次の奇妙な漸化式が知られている。
a0180787_23545896.gif

じつは、この漸化式だけからでもスターンの二原子数列を生成することができる(きちんと定義できているか不安な方は、次のように考えればよい。任意のインデックスnは偶数か奇数かのいずれかである。この漸化式を繰り返し使えば、インデックスをどんどん小さくしていくことができて、どんなnからスタートしても、有限回のステップでa1にたどりつく)。

さて。先ほどのパスカルの三角形からの構成と、この漸化式からの構成。同値であることを証明するにはどうしたらいいだろう。ここに答えは書かないので、興味のある方は考えてみてほしい。

この数列の母関数を考えてみても面白い。
a0180787_8543392.gif

と定義する。先の漸化式を上手く使うと(|x|<1なら)、
a0180787_0133478.gif

たぶん、こんな感じに変形できるはずだ(きちんと証明していないので違っていたらすみません)。

スターンの二原子数列はファレイ数列の分子にも現れる。『格子からみえる数学』でも、基本三角形に関係するのは、じつはファレイ数列の方だ。フォードの円とも関係がある。ファレイ数列は『数学セミナー2013年12月号』に掲載の寺澤順「有理数をカウントする数式」という記事でも紹介されていた。

ちなみに、なぜ、この数列に興味を持つに至ったかについては、高木関数に似たものを、シェルピンスキーのギャスケットから作るとどうなるのかなあと考えて、三角形の数を数えるときに必要になったからであった。この試み自体はたいして面白い結果にはならなかったのだが、好きな数列ができてよかった。流行ると面白いなあと思う。
by j344 | 2013-11-24 00:38 | 数学 | Comments(2)